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Abstract

To improve the behaviour of reduced-order proper orthogonal decomposition (POD)-Galerkin systems, two numer-

ical methods are proposed. These methods determine free parameters in the POD-Galerkin system from flow simula-

tions via a minimization problem. They give rise to linear systems and their computational costs are reasonable. Both

methods are assessed for two flow configurations: a two-dimensional flow around a square–cylinder for a Reynolds

number of 100 and a three-dimensional flow past a backward-facing step for a Reynolds number of 7432 based on

the step height and the streamwise velocity at the middle of the inlet. For both configurations, the methods are effective

since accurate calibrated reduced-order POD-Galerkin systems are obtained.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The proper orthogonal decomposition (POD, also known as Karhunen–Loève decomposition and prin-

cipal component analysis) is a theoretical and post-processing tool to educe global coherent structures of

flows thus to describe and analyze them. Moreover, since laminar and transitional fluid flows are very often

governed by a small number of coherent structures, it is interesting to use the spatial POD functions, called
POD modes, as basis functions for a Galerkin method in order to construct a system of ordinary differential
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equations (ODEs) which approximates the whole flow dynamics. Therefore, after truncating the POD mod-

al basis by keeping only the main POD modes, a ODE system of small dimension can be extracted from

numerical data (see [1] for a survey): this system is called (reduced-order) POD-Galerkin system.

As an effective technique of low-order modelling, the POD-Galerkin method is attractive for flow con-

trol (see [2–4]). However, especially for transitional and turbulent flows, the low-order ODE systems
obtained may be barely accurate and even sometimes unstable.

A first reason is the intrinsic gap that may exist between the nature of the data whose POD is performed

and the variational formulation on which the Galerkin method is based. For instance, experimental data of

a flow at low Mach number may not satisfy very accurately the variational formulation derived from the

incompressible Navier–Stokes equations, or data provided by finite-volume codes are not computed via

the numerical discretization of a variational formulation. This can bring about a lack of effectiveness of

the POD-Galerkin method in practice in numerous cases.

A second and main reason is that the low-order truncation of the POD basis inhibits generally all the
transfers between the large and the small (unresolved) scales of the fluid flow. In consequence, to recover

the effects of the truncated modes, that is generally of the small scales, two different ways have been studied

in the literature: the definition of POD in the H1 Sobolev space rather than in L2 [5], or the use of ‘‘eddy’’

viscosities [6,7]. That use of artificial viscosities, whose relevance was investigated for a separated non-

homogeneous turbulent flow in [8], amounts to perturbing the viscous terms of the POD-Galerkin system.

As mentioned by Sirisup et al. [9], the add of artificial viscosities remains interesting for two-dimensional

flows with Reynolds numbers of the order of 100 for correcting the long-term behaviour of POD-Galerkin

systems. Furthermore, if the boundary conditions are disregarded when the Galerkin method is applied (it
can be indeed difficult to deal with complex unsteady Dirichlet conditions in practice, see Appendix A for

explanations), the modelling of the pressure term may pose problems. Moreover, the computation of a

POD-Galerkin system is subject to numerical errors, which may be very prejudicial since such an ODE

system can be very sensitive. So it appears interesting to develop methods to increase the accuracy of re-

duced-order POD-Galerkin models and to improve the modelling skills of the POD-Galerkin method.

To correct the behaviour of a low-order POD-Galerkin system, two numerical methods are here pro-

posed and assessed. They consist in adjusting the polynomial coefficients which define the POD-Galerkin

system by solving a minimization problem: the new ODE system has to recover optimally the dynamics
of the data used to construct the POD and is computed in taking the original POD-Galerkin system into

account.

A similar principle was investigated by Galletti et al. [10] to calculate some linear models of terms rel-

evant to the pressure in the construction of a POD-Galerkin system of laminar flow regimes past a square

cylinder. Here, we propose to modify all the coefficients (linear and quadratic) of the POD-Galerkin system

to improve it. Moreover, the methods are assessed on a turbulent flow configuration where the main chal-

lenge is the modelling of the effect of the truncated POD modes (that is the small scales). Furthermore, it is

worthy of note that the cost functions used in the present paper are designed to control the way the initial
POD-Galerkin system is modified (thanks to the cost function D, see Section 3.1), which is very interesting

in practice (refer to the observations of Sections 4.2 and 4.3).

The computational costs of these methods are reasonable since they use the temporal part of the POD

information, whereas the Galerkin method uses the spatial POD information (that is the POD modes them-

selves), much more voluminous in practice, to construct the ODE system (see Section 3.4 for further de-

tails). This motivates the development of calibration methods: a clever use of the spatial POD

information could enable large computational saving for reduced-order system from very demanding

computations.
The reduced-order POD-Galerkin fluid flow modelling is described and applied to two configurations in

Section 2: to a two-dimensional quasi-incompressible laminar flow around a square–cylinder and to a three-

dimensional incompressible turbulent flow past a backward-facing step. The general principle of the
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calibration of low-order POD-Galerkin systems is formally presented then the numerical methods are pro-

posed in Section 3. These calibration methods are finally assessed in Section 4 for both flow configurations.
2. The reduced-order POD-Galerkin modelling

In this section, the POD-Galerkin method is described for the modelling of an incompressible flow

(details about treatment of the boundary conditions are displayed in Appendix A). Then few results for

the two test flow configurations which were used in our numerical experiments are presented.

2.1. POD-Galerkin method for incompressible flows

The POD is applied to a velocity field ue 2 Rd which is known over the time interval [0,T] and the phys-
ical space X � Rd (d = 2 or 3). That is ue 2 L2(0,T,L2(X)d) is decomposed into an orthonormal basis of spa-

tial functions ui of L
2(X)d, called POD modes, for each time t 2 [0,T]:
ueðx; tÞ ¼
X
i

ue;uið Þ|fflfflffl{zfflfflffl}
aei ðtÞ

uiðxÞ 8ðx; tÞ 2 X� ½0; T �; ð1Þ
where (Æ,Æ) is the classical L2(X)d inner product on the flow domain and where the aei ðtÞ are the time-depen-

dent coefficients of the decomposition. For an incompressible flow (with a unitary constant density), the
mean kinetic energy per mass unit captured by the ith POD mode ui is
1

T

Z T

0

aei ðtÞ
2
dt ¼ ki ð2Þ
and the basis is ordered such that ki P ki+1 for all i. In all the following, ri will denote
ffiffiffiffi
ki

p
. The POD basis

is constructed to be optimal in the sense that, for any M and any orthonormal tuple (w1, . . ., wM) of
L2(X)dM,
1

T

Z T

0

ue �
XM
i¼1

ue;uið Þui

�����
�����
2

L2

dt 6
1

T

Z T

0

ue �
XM
i¼1

ue;wið Þwi

�����
�����
2

L2

dt: ð3Þ
From a physical point of view, the firstMmodes, ui for i 2 {1, . . .,M}, capture more kinetic energy of ue on
average over [0,T] than any other set of M orthonormal spatial functions. Since the kinetic energy captured

by the first M modes is
PM

i¼1ki, the decrease of the POD spectrum, that is of the distribution of the ki with
respect to the index i, quantifies the efficiency of the POD.

This optimality property of the POD explains why the first M POD modes, for M large enough, are

interesting candidates for a Galerkin method. The POD-Galerkin system obtained is labeled as reduced-

order since the POD basis is truncated by neglecting the POD modes ui for i > M.

The POD-Galerkin system is constructed by applying the Galerkin method, using the space spanned by

the firstM POD modes. The variational formulation is generally deduced from the velocity-pressure expres-

sions of the non-dimensional Navier–Stokes equations, considering a solenoidal test function u (indeed, the

POD modes keep some properties of ue as vanishing divergence):
d

dt
ðu;uÞ þ ððu � rÞu;uÞ þ 1

Re

Xd
i¼1

ruxi ;ruxi

� �
þ T oX ¼ ðh;uÞ; ð4Þ
where u is the velocity field, Re is the Reynolds number, h is a source term (force field independent of the

flow), uxi ¼ u � xi and uxi ¼ u � xi are the component of u and u in the spatial direction of the unitary vector
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xi (1 6 i 6 d) and where ToX is a boundary term (consult Appendix A for further details about it and the

explicit treatment of the boundary conditions).

Therefore, under the assumption that the reduced POD basis is suitable (that is the M first modes are

sufficient to accurately represent the flow), a M-dimensional polynomial ODE system is derived by taking

the M first POD modes as basis and test functions. More precisely, if h = 0 and ToX = 0, the POD-Galerkin
system is
_agðtÞ ¼ f gðagðtÞÞ ¼

f g
1 ðagðtÞÞ

..

.

f g
MðagðtÞÞ

2664
3775; where agðtÞ ¼

ag1ðtÞ
..
.

agMðtÞ

2664
3775 2 RM ; ð5Þ
and each polynomial f g
i can be expressed as
f g
i ðagÞ ¼

XM
k¼1

Ck
i

Re
agk þ

XM
k¼1

XM
j¼1

Ck;j
i agka

g
j ; ð6Þ
with
Ck
i ¼ �

Xd
j¼1

rðukÞxj ;rðuiÞxj
� �

and Ck;j
i ¼ � ðuk � rÞuj;ui

� �
: ð7Þ
Furthermore, when non-homogeneous Dirichlet boundary conditions for the velocity are considered, the

POD is generally applied to ueðx; tÞ � �ueðx; tÞ instead of ue, with �ue chosen so that ue � �ue satisfies homoge-

neous Dirichlet boundary conditions (see Appendix A). In that case, the contribution of �ue has to be added
to system (5) together with the contributions of ToX and h. In the flow configurations of Sections 2.2 and

2.3, the Dirichlet conditions for the velocity are non-homogeneous yet unsteady and �ue is simply chosen as

the mean velocity field: the POD computed corresponds to the fluctuant velocity. In fact, in the case of the

turbulent configuration (Section 2.3), the inlet Dirichlet boundary condition is not strictly unsteady how-

ever it is realistic to perform the POD on the fluctuant velocity and to neglect the boundary term since the

fluctuant velocity and its POD modes take very small values at the inlet (see [8]).

Finally, the general form of the POD-Galerkin system obtained is
_agðtÞ ¼ f gðagðtÞÞ þ rðtÞ and agð0Þ ¼ aeð0Þ; ð8Þ
where a e(0) are the initial conditions, f g is a vector polynomial of degree 2 in the components of ag and r

takes the contributions of the source term h, of the boundary term ToX and of �ue into account.
In the following, the methods are presented for r = 0 for the sake of clarity. Moreover, in the modelling

of the two test flow configurations used here, �ue is unsteady, h = 0 and the boundary term ToX vanishes (re-

fer to Appendix A), thus r is independent of the time: the constant vector r is simply considered as a term of

degree zero of f g in the numerical experiments of Section 4.

Notice that a polynomial POD-Galerkin system can also be constructed in the compressible case for a

perfect gas by performing the POD on the suitable set of flow variables (the inverse of the density q�1, the

velocity u and the pressure p): see [11] or [5]. In consequence, the methods proposed here can be theoret-

ically applied to compressible cases without any modifications although the numerical experiments
presented here were only performed for the incompressible configurations of Sections 2.2 and 2.3.

In conclusion, given numerical data for the flow field ue, that is, for example, given a set of N snapshots

along a time interval [0,T], a POD basis (ui)16 i6N can be obtained such that ueðtÞ ¼ �ueðtÞ þ
P

16i6Na
e
i ðtÞui.

The POD-Galerkin system is then formed by evaluating a variational formulation of the governing equa-

tions with the M first POD modes. The questions are then: is the solution ag(t) to (8) a good approximation

of the true time coefficients a e(t)? And, if not, how to modify (8) to improve the model?



196 M. Couplet et al. / Journal of Computational Physics 207 (2005) 192–220
2.2. Two-dimensional flow with a Reynolds number of 100

The first test configuration is a quasi-incompressible two-dimensional vortex-shedding flow around a

square cylinder for Re = 100. The database was computed by a compressible finite-volume code for a Mach

number of 10�3 (see [12] for details) and is composed of N = 480 snapshots of the velocity over one shed-
ding cycle of the Von Kármán vortex street (that is for [0,T]). Some vorticity contours of the fluctuant

velocity at time t = T/2 are plotted in Fig. 1.

From the POD of the fluctuant velocity performed by the snapshot method (see [13]), a 6-mode POD-

Galerkin system was computed. The first six POD modes capture more than 99.9% of the fluctuant kinetic

energy of the database KN ¼
PN

i¼1ki:
i

Fig. 1. Iso-line
1

s of the vorticit
2
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The spectrum is plotted in logarithmic scale for the first 16 modes in Fig. 2. Iso-lines of the transverse

components of the first six modes are plotted in Fig. 3. These figures show that the first POD modes can be

naturally grouped by pairs. This is coherent with the nature of the vortex shedding flow and with many

preceding works, for instance [14]. Moreover, the flow topology is consistent with the results of the latter
paper.

Values of f g
1 ðaeðtÞÞ and f g

2 ðaeðtÞÞ are compared to _ae1ðtÞ and _ae2ðtÞ in Fig. 4. The histories of ag1ðtÞ and ag2ðtÞ
computed from the 6-mode system are displayed on the same figure with ae1ðtÞ and ae2ðtÞ (all the simulations

of the polynomial POD-Galerkin systems were performed with a classical fourth-order Runge–Kutta

scheme).

The 6-mode system gives a good approximation of the dynamics of the two first POD modes, however its

simulation shows that the system is not able to reproduce very accurately the history of a e since there is a

noticeable difference between ae2 and ag2 at t = T. This gap has three causes: the numerical errors, the effects
of the truncation of the POD basis and the fact that the data do not perfectly fit the variational formulation

(4) by nature.

2.3. Three-dimensional turbulent flow

The second test configuration is a three-dimensional incompressible turbulent flow past a backward fac-

ing step. The database was provided by an incompressible finite-difference large-Eddy simulation (see [15])

and is formed of N = 1000 snapshots of the velocity for a time interval [0,T] long enough to encompass at
least one period of the low-frequency breathing mode of the recirculation bubble: T ¼ 37:5h=U ¼ 50h= �U
where h is the step height, U the streamwise velocity at the middle of the inlet and �U the mean streamwise
mwise direction.



Fig. 2. The 16 first values of the POD spectrum of the square cylinder flow in logarithmic scale.

Fig. 3. Iso-lines of the transverse components of u1, u2, u3, u4, u5 and u6 on half the computational domain in the streamwise

direction.
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velocity at the entrance. The Reynolds number based on U and h is 7432 and the one based on �U and the

height 10h of the channel above the step is 66,000. The geometry of the computational domain is presented

in Fig. 5.



Fig. 4. Comparison of the dynamics (left) and of the history (right) of the data with the behaviour of 6-mode POD-Galerkin system for

the two first modes.
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Fig. 5. Geometry of the computational domain which corresponds to the spatial extent of the POD modes.
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The POD of the fluctuant velocity was performed by the snapshot method using the full database. Fig. 6

shows some Q-isosurfaces of the mean velocity �ue and of the PODmodes u1, u20 and u40. The POD spectrum

is presented in logarithmic scale in Fig. 7: the POD is quite efficient according to the decrease of the spectrum.

Notice that the POD of such a step flow is presented in [16] for a Reynolds number about twice smaller

and that a low compactness of the kinetic energy distribution within the POD basis is observed. Three facts

make it possible to understand this difference. Firstly, the database of [16] was computed by direct numer-

ical simulation so contains a larger range of structures than our LES database. Secondly, the POD is com-

bined with a Fourier decomposition which is not strictly equivalent to a full POD (which is optimal) even if
a spectrum close to the POD spectrum is generally expected. Thirdly, the time interval over which the flow

is analyzed is twelve times longer in [16], considering some time units based on the step height and on the

maximum inlet streamwise velocity in a transverse plane located before the step (0.07h and 6h from the step

in [16] and in our case, respectively).

The POD-Galerkin polynomial f g computed takes the first M = 86 modes which capture more than

99.9% of the fluctuant kinetic energy into account. That POD-Galerkin system was defined as explained

in Section 2.1 and in Appendix A: the system is based on the classical Navier–Stokes equations, not on

the filtered Navier–Stokes equations and the subgrid model used to perform the LES of the flow.
Taking the subgrid model into consideration might be a benefit, however disregarding it considerably

simplifies the reduced-order modelling; furthermore and above all, we would like to point out that neglect-



Fig. 6. Visualization of the main structures of �ue, u1, u20 and u40 (Q-isosurface).

Fig. 7. Logarithmic POD spectrum of the step flow.

M. Couplet et al. / Journal of Computational Physics 207 (2005) 192–220 199
ing the last POD modes, which is the basis of the reduced-order POD-Galerkin modelling, has by nature a

stronger impact than neglecting the subgrid model: the structures of the neglected POD modes are neces-

sary larger than the unresolved scales and play in consequence a more important role in the flow dynamics.



200 M. Couplet et al. / Journal of Computational Physics 207 (2005) 192–220
That is why the approach chosen here consists in a way in including the modelling of the subgrid scales in

the modelling of the neglected POD modes, this will be performed by a calibration of the ODE system.

Fig. 8 compares the behaviours of the data and of the 86-mode POD-Galerkin system for the first and fifth

modes. The lack of accuracy of the reduced-order system is obvious for this turbulent three-dimensional con-

figuration. Indeed, ag diverges from a e and it seems that the system does not dissipate enough energy.
3. Definition of the methods

In the following, the calibration methods designed to improve the POD-Galerkin system are presented

for r = 0 for the sake of clarity.

3.1. The general formulation

The polynomial f a, which determines the calibrated system we are looking for, will be defined as the

solution to an optimization problem. f a should minimize a functional Ja:
Fig. 8.

step fl
Jaðf Þ ¼ ð1� aÞEðf Þ þ aDðf Þ; ð9Þ
Comparison of the dynamics (left) and of the history (right) of the data with the behaviour of the POD-Galerkin model of the

ow for the 1st (top) and 5th (bottom) modes.
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where a 2 [0,1] is a weighing parameter, Eðf Þ measures the ‘‘error’’ between the behaviour of the data, that

is the one of a e(t), and the behaviour of the dynamical system associated to f whose state is a(t) and where

Dðf Þ is a cost linked to the distance between f and f g. Note that f is a vector polynomial in M variables of

degree 2 with M components. In the following, E takes the form
Eðf Þ ¼
keðf ; tÞk2K
D E
keðf g; tÞk2K
D E ; ð10Þ
where Æ Æ æ is a linear time average operator (discrete or continuous, for instance an integral over [0,T] or an
arithmetic average on a subdivision of [0,T]), i Æ iK is a norm of RM and e is an operator with values in RM .

This operator will be defined so that the solution a to the Cauchy problem
ðPf ðaÞÞ
_aðtÞ ¼ f ðaðtÞÞ
að0Þ ¼ aeð0Þ

�
ð11Þ
is a e over [0,T] if, and only if, ie(f,t)iK = 0 for all t 2 [0,T]. In fact, the ith component of e(f,t) quantifies a

distance linked to the ith POD mode between the data and the ODE system defined by f at the time t: it

depends only on quantities related to the ith mode as aei , _a
e
i , fi(a

e) or fi(a) for a satisfying ðPf ðaÞÞ. Note that

K 2 RM�M denotes the symmetric definite positive matrix associated to i Æ iK:
8z 2 RM kzkK ¼
ffiffiffiffiffiffiffiffiffiffi
zTKz

p
: ð12Þ
Changing this matrix enables us to give more or less importance to certain POD components (see the

remark below).

Three choices for e are proposed: a constrained non-linear definition (Section 3.3.1) and two definitions

which are affine with respect to f (Sections 3.3.2 and 3.3.3). Appendix B emphasizes the fact that, for e

affine, E is a quadratic function and then the optimization problem reduces to a linear system.

D is expressed using a semi-norm i Æ iP on the polynomial vector space:
Dðf Þ ¼ kf � f gk2P
kf gk2P

: ð13Þ
If y 2 RP is the vector of all the coefficients of the vector polynomial f of degree 2 in the natural monomial

basis P ¼ M 1þM þ MðMþ1Þ
2

� �
¼ MðMþ1ÞðMþ2Þ

2

� �
ifiP is defined by
kf kP ¼
ffiffiffiffiffiffiffiffiffiffiffi
yTPy

p
; ð14Þ
where P 2 RP�P is a non-negative symmetric matrix. Modifying i Æ iP, that is P, changes the relative impor-

tance of each polynomial coefficient, in particular i f iP may be restricted to a subset of the polynomial coef-
ficients of f such that only this subset is taken into account (partial-Galerkin method, Sections 3.4 and 4.3).

The semi-norms i Æ iP used in Section 4 are Euclidian norms of all or, respectively, a subset of the polyno-

mial coefficients along the natural monomial basis: P is the identity matrix IP of dimension P or, respec-

tively, IP whose some chosen diagonal elements are set to zero.

Whatever the definition of e is, minimizingJa is a optimization problem in RP since it amounts to find the

vector y a of all the polynomial coefficients of f a. The proposed methods amounts to adding a vector poly-

nomial f a � f g to the original POD-Galerkin system. This polynomial can be virtually split into three poly-

nomials: f a � f g = f e + f> + f p, that is into a small perturbation fe which corrects the errors of the
computation of f g, a non-linear closure model f > of the truncated terms which is more general than a linear

viscous model and, if the boundary conditions are not explicitly taken into account and in consequence the

pressure term poses problems, a polynomial f p which models the boundary pressure term. Indeed, the cal-

ibrated POD-Galerkin system is _aðtÞ ¼ f aðaðtÞÞ, that is virtually _aðtÞ ¼ ðf g þ f eÞðaðtÞÞ þ f >ðaðtÞÞ þ f pðaðtÞÞ.
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3.1.1. Remark

It is worth noting that themeanings ofE andD depend on i Æ iK and i Æ iPbut also on themeaning of the time-

dependent coefficients considered.For instance, in our numerical experiments (Section 4), i Æ iK is theEuclidean
norm (K is the identitymatrix IMof dimensionM) hence it keeps the natural hierarchyof thePODmodes: since

theui are normalized, T�1
R T
0
aei ðtÞ

2
dt ¼ r2

i is the kinetic energy associated to the ithmode and the aei are ‘‘nat-
urally ranked’’. For the same definitions of E andD, the interpretation of the results would not be equivalent

for polynomial ODE systems constructed to approach the behaviour of the normalized time-dependent co-

efficients aei =ri instead of the aei (K should be changed into diag(r1, . . ., rM) for E to be equivalent).

Furthermore, it is better to calibrate the ODE system whose time-dependent unknowns are the ai instead

of the equivalent one whose unknowns are the ai/ri for the same diagonal matrices i Æ iK and i Æ iP since then

minimizing E amounts to decrease the distance between the ODE system and the data for the first modes in

priority and since then it appears less expensive to modify in priority the polynomial coefficients of the last

modes if you pay attention to the term D.
However, in our numerical experiments, each component of the optimal vector polynomial f a is com-

puted independently of the others in practice owing to the particular choices of e, K and P retained (see

the introduction of Section 4). Thus, calibrating either POD-Galerkin systems is equivalent, yet the values

of E and D are more representative of the effects of the calibrations for the POD-Galerkin system whose

unknowns are the ai.
3.2. Synthetic scheme of the calibration POD-Galerkin methods

To give a better idea of the proposed algorithms, the main steps of the calibration POD-Galerkin mod-

elling for an affine definition of e(Æ,t) are here summed up:
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The calibration methods optimize the coefficients of the quadratic vector polynomial f g associated the
P
reduced-order POD-Galerkin system. The problem is solved in R by considering the P coefficients of

the vector polynomials with M components of degree 2 in M variables: yg and y a are the vectors of the

coefficients of f g and f a in the natural monomial basis (mk).

If e(f,t) is affine with respect to f then the calibration amounts to solve a linear system whose matrix B a

and right-hand side l a are formed after the computation of the matrix A = B0 and the right-hand side l = l0

(a = 0), which is performed during the two steps of the calibration: see Appendix B. The step 1 of the cal-
ibration, that is the computation of A and l, depends on the definition of the operator e thus is different for

the two methods which are proposed in the following. For both of these methods, some expressions of A

and l are given in Appendix C, moreover the linear systems which are obtained are detailed in the case

M = 2 in Appendix D.
3.3. Three definitions for e

3.3.1. Non-linear definition with dynamical constraints

Since the main objective is to obtain an ODE system whose simulation recovers as accurately as possible

the evolution of the data, the natural mathematical formulation of the problem would consist in defining

e(f,t) as
e1ðf ; tÞ ¼ aeðtÞ � aðtÞ; ð15Þ

under the constraint that a(t) satisfies (11). Thus, a solution f a to problem (9) would minimize the gap

between data and dynamical system states on average.
Unfortunately, that strongly non-linear definition of e is not satisfactory for several reasons. Indeed,

since polynomials f may not be globally Lipschitz (only locally), the unique maximal solution a(t) to the

Cauchy problem ðPf ðaÞÞ can take infinite values in finite time, in particular before the final time T of

the experiment. Thus, in general, hke1ðf ; tÞk2Ki is not defined on all the vector polynomial space but only

on an open subset O (to which at least the polynomials of degree 1 belong): therefore, for e = e1, J
aðf Þ

is not defined if f 62 O. Notice that E, as defined in Section 3.1, has no sense if f g 62 O (case where the

POD-Galerkin model is unstable). Furthermore, the minimization problem for e = e1 is not well posed: sev-

eral solutions coexist in general.
However, since Ja takes finite values and is differentiable in O, it would be possible to look for a local

minimum, starting from f = f g (or from its linear part and redefining E using for instance e(0,t) instead of

e(f g,t) if f g 62 O) and applying a non-linear conjugate gradient algorithm. But the computational cost of the

gradient evaluation is large, the convergence is not guaranteed and the algorithm has to be designed in con-

sidering that a polynomial iterate is not necessary in O.This non-linear definition of e can yet be modified

into an affine one by suppressing the dynamical constraint (11) in the definition of e1 as proposed in the next

section.
3.3.2. State calibration method

The operator e1 defined in the preceding section can be written
e1ðf ; tÞ ¼ aeðtÞ � aeð0Þ �
Z t

0

f ðaðsÞÞds; ð16Þ
where a(t) is given by the constraint (11) on f. To suppress this non-linear constraint we can use:
e2ðf ; tÞ ¼ aeðtÞ � aeð0Þ �
Z t

f ðaeðsÞÞds: ð17Þ

0
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In this manner, we test how accurately the data respect the dynamical system, keeping the same point of

view than in the previous section where the data history a e and the state a of the solution to the ODE sys-

tem defined by f are compared. Clearly the operator e2 is affine with respect to f: minimizing Ja gives rise to

a linear system.

3.3.3. Flow calibration method

Since the ideal polynomial should satisfy _aeðtÞ ¼ f ðaeðtÞÞ, we propose as third choice for e the operator
e3 f ; tð Þ ¼ _aeðtÞ � f ðaeðtÞÞ: ð18Þ

Therefore we try to minimize the gap between the dynamics of the data and the flow of the ODE system

defined by f, that is the gap between the time derivative of a e and the vector field defined by f along the

trajectory covered by a e(t) for t 2 [0,T]. In fact, e3 is the time derivative of e2:
e2ðf ; tÞ ¼
Z t

0

e3ðf ; sÞds ð19Þ
and e3 is affine with respect to f as e2 is.
3.4. Computational cost and partial-Galerkin method

The computational cost of the POD-Galerkin polynomial coefficients is large for transitional or turbu-

lent flows. Indeed, if the flow structures cover a large range of scales, the number of POD modes kept to
construct the ODE system and also the number of meshes are large. Moreover, the use of the calibration

methods to improve the system increases that cost. However, we expect to be able to decrease the cost of the

ODE system computation by ‘‘mixing’’ the Galerkin method with a calibration method, that is by calcu-

lating only a ‘‘minimum’’ number of POD-Galerkin polynomial coefficients then evaluating the others

by the optimization process (see below).

If that technique is effective, its cost is likely to be smaller than the one of a full Galerkin method: the

methods we propose only require the temporal information given by the POD (that is a e(t)), whereas the

Galerkin method uses the voluminous spatial information (the ui) and leads to spatial operations which are
computationally expensive.

And yet, even if the cost of computing a POD-Galerkin system from a POD decreases, it is hard to

predict whether the global cost, including the POD, will increase or not when that technique we call par-

tial-Galerkin method is used. Indeed, when the snapshot method is applied to form the POD (see [13]), it is

often possible to calculate a suitable set of POD modes from only few snapshots regularly distributed in

time. In that case, the aei ðtÞ are only calculated at the corresponding times during the POD computations

(they are the eigenvectors of the temporal correlation matrix used to form the ui). Thus, it may be necessary

to increase the computational cost of the POD to have enough temporal data for the partial-Galerkin meth-
ods to be effective. It is noticeable that the number of temporal POD data (the number of times at which a e

is known) could be artificially increased using cubic spline interpolation.

Nevertheless, that technique remains interesting since this is expected to decrease the computational cost

of the calibration POD-Galerkin methods.

Once a subset of the polynomial coefficients have been evaluated by the Galerkin method, two strategies

are considered. In all cases, the initial polynomial Galerkin polynomial f g is defined by setting the other

coefficients to zero.

The first strategy is to define i Æ iP as a semi-norm which takes only the subset of the coefficients com-
puted by the Galerkin method into account. For example, when this strategy is applied in our numerical

experiments,P is defined as the modified identity matrix whose diagonal values whose locations correspond

to the coefficients which were not computed are set to zero.
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The second strategy is to use a definite norm i Æ iP on all the coefficients (for example P = IP as in our

experiments). In that latter case, it is a priori important to compute by the Galerkin method the polynomial

coefficients whose effects cannot be neglected since the others will be assumed to be zero and taken into

account in if � f giP.
Some numerical results of partial-Galerkin methods are discussed in Section 4.3.
4. Numerical experiments

In this section, some results for the two calibration methods (e = e2 and e3) are presented for the fluid

flow configurations of Sections 2.2 and 2.3.

i Æ iK is the usual Euclidian norm on RM (K = IM). Moreover, all the results plotted here were com-

puted with P = IP (so i Æ iP is the complete Euclidian norm on the monomial basis). Only the experi-
ments based on the first strategy of partial-Galerkin methods were performed with some singular

matrices P (some of its diagonal elements are set to zero as explained in the previous section), however

no results are plotted in this case because the linear system is ill-conditioned: read the Section 4.3 for

the details.

It is worthy of note that for the state and flow calibrations (e = e2 or e = e3) and for the particular forms

of K and P used, the resulting linear problem can be naturally split into M similar linear problems thus it

requires to solve a linear problem of dimension P/M with M different right-hand sides (where

P=M ¼ ðMþ1ÞðMþ2Þ
2

is the dimension of the scalar polynomial space of degree 2): each component f a
i of the

optimal polynomial can be computed independently of the others (this is emphasized in Appendix D for

M = 2).

We remind you that the optimal solution computed is a vector ya 2 RP which defines all the coef-

ficients of a vector polynomial f a of degree 2: all the coefficients are calibrated in this way, even if only

a part of the POD-Galerkin coefficients is computed and taken into account (partial-Galerkin

methods).

For the flow calibration (e = e3), Æ Æ æ is the arithmetic time average on the regular subdivision of [0,T]

corresponding to the snapshot database used:
gðtÞh i ¼ 1

N

XN�1

k¼0

gðkDtÞ with Dt ¼ T
N � 1

: ð20Þ
For the state calibration (e = e2), Æ Æ æ is defined by the discretization of the integration over [0,T] given by the

trapezoidal rule (second-order method), which almost amounts to use an arithmetic time average:
hgðtÞi ¼ Dt
T

XN�1

k¼0

1

2
gðkDtÞ þ gððk þ 1ÞDtÞ½ �: ð21Þ
The implementation of the state calibration method and the calculation of the corresponding cost func-

tion E, denoted by E2 to precise that e = e2, imply the discretization of terms in the form
R t
0
gðaeðsÞÞds

and the same trapezoidal rule is applied (these appear in the expressions of A and l defined in Appendix
C).

Moreover, all the simulations of the POD-Galerkin systems are performed by a classical fourth-order

Runge–Kutta scheme with a time step of 10�4T, in particular to evaluate E for e = e1 (which is denoted

by E1 in the following).

The numerical code was previously validated on data generated by some simulations of three-dimen-

sional quadratic ODE systems: a prototype one proposed by Rössler in [17] and the Lorenz system (see

[18,19]). Even for a = 0, suitable calibrated systems f a were obtained.
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4.1. Numerical efficiency and impact on the POD-Galerkin systems

The optimal polynomials f a and the cost functions E are indexed by the subscript of the corresponding

operator e: E1 for e = e1, E2 and f a,2 for e = e2, E3 and f a,3 for e = e3: f
a,2 is obtained by state calibration

and fa,3 by flow calibration, respectively. More precisely, for all j 2 {1,2,3} and all k 2 {2,3},
Ejðf Þ ¼
kejðf ; tÞk2K
D E
kejðf g; tÞk2K
D E ; in particular Ejðf a;kÞ ¼

kejðf a;k; tÞk2K
D E
kejðf g; tÞk2K
D E ; ð22Þ
where fa,k is the optimal polynomial which satisfies
ð1� aÞEkðf a;kÞ þ aDðf a;kÞ 6 ð1� aÞEkðf Þ þ aDðf Þ ð23Þ

for all vector polynomial f (j = k in that latter equation): fa,k depends on a.

The values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðf a;kÞ

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðf a;kÞ

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3ðf a;kÞ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðf a;kÞ

p
are presented for both calibration meth-

ods, that is k = 2 or k = 3, applied to the two flow configurations with respect to a (or a parameter d in

increasing bijection with a on [0,1], see below).

For a = 1, if i Æ iP is a norm (not just a semi-norm), the unique solution to the minimization problem is

f a = f g, thusDðf aÞ ¼ 0 and Eðf aÞ ¼ 1 since E is a normalized cost: the POD-Galerkin is not calibrated. For
state or flow calibration methods (k = 2 or k = 3), the original ODE system is more and more calibrated in

the sense that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekðf a;kÞ

p
decreases and more and more modified in the sense that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðf a;kÞ

p
increases as a

tends to zero: see (23). It is noticeable that, if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðf a;2Þ

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3ðf a;3Þ

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðf a;2Þ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðf a;3Þ

p
are necessary

monotone functions of a 2 [0,1] by definition, the curves of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðf a;2Þ

p
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðf a;3Þ

p
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðf a;3Þ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3ðf a;2Þ

p
may be non-monotone a priori.

Few components of the solutions to the original system defined by f g and of some calibrated systems, which

are necessary computed to evaluateE1, are displayed in the following (in phase-portrait format for the square–

cylinder flow configuration and in function of the time for the step flow configuration): agi is the ith component

of the solution ag to the original POD-Galerkin system and aa;ki denotes the ith component of the solution aa,k

to the calibrated systemdefined by fa,k. For instance, a1,2 and a1,3 are respectively the solutions to the state- and

flow-calibrated systems computed with a = 1: a1,2 = a1,3 = ag if i Æ iP is definite (P non singular).

4.1.1. The square–cylinder configuration

The results were computed varying linearly a, but also varying linearly a parameter d such that
a ¼ d
fð1� dÞ þ d

with f ¼
keðf g; tÞk2K
D E
keð0; tÞk2K
D E ; ð24Þ
a is in increasing bijection with d on [0,1]. In fact, that second way to vary a amounts to minimize
eJd
ðf Þ ¼ ð1� dÞeEðf Þ þ dDðf Þ; ð25Þ
with
eEðf Þ ¼ fEðf Þ ¼
keðf ; tÞk2K
D E
keð0; tÞk2K
D E ; ð26Þ
since
eJd
ðf Þ ¼ d

a
Jaðf Þ ¼ fð1� dÞ þ d½ �Jaðf Þ: ð27Þ
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Indeed, results with linear variation of d are more readable than ones with linear variation of a since the

curves decrease or increase extremely rapidly when a varies between 0.95 and 1 as you can see in Fig.

10. Therefore, two series of results are obtained and plotted for a and d in {0.05, 0.1, . . ., 1}. a is displayed

in function of d for e = e2 and e = e3 in Fig. 9 for d 2 [0.05,1]. The minimization results are presented in Fig.

10. It is observed that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðf a;2Þ

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3ðf a;2Þ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðf a;3Þ

p
are increasing functions of a. Only

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðf a;3Þ

p
decreases very slowly for d 2 [0.05,0.25] but its global shape is an increase.

For both calibrations (k = 2 or k = 3),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3ðf a;kÞ

p
appears little reduced for small values of a (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3ðf a;2

p
Þ

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3ðf a;3Þ

p
are about 0.89 for a = 0.05): this is normal since the non-calibrated POD-Galerkin system f g

was relatively accurate (the difference between _ae and f g(a e) which defines e3(f
g,t) is very small, look at the

Fig. 4) and since the efficiency of the calibration is limited by the machine precision.

The main observation is that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðf a;kÞ

p
vanishes for k = 2 and k = 3 as well when a tends to zero: state

and flow calibrations are effective on this two-dimensional quasi-incompressible configuration. Moreover,

this can be done for very small perturbations of the original POD-Galerkin system since, for instance,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðf a;2Þ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðf a;3Þ

p
are less than 2% and correspond to very good improvements of the ODE system

for a = 0.95:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðf a;2Þ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðf a;3Þ

p
are about 0.07.

To visualize the effectiveness of the calibration of the POD-Galerkin system of the square–cylinder flow,

the solution ag to the non-calibrated system is presented over three periods, that is for t 2 [0,3T], with the

solution a0.05,3 to the system obtained by flow calibration with a = 0.05 in Fig. 11. It is observed that the

calibrated system gives a solution which is periodic (and matches the data history a e) whereas the solution

given by the original POD-Galerkin system diverges from that periodic trajectory.

4.1.2. The backward-facing-step configuration

For the second test flow configuration, the calibration of two POD-Galerkin systems are experimented:

the 86-mode system and the 45-mode system. The 45 first POD modes capture more than 95% of the

fluctuant kinetic energy of the data; the polynomial coefficients of the 45-mode system are included in

the coefficients of the 86-mode system.

Some results for a = 0.001 and a in {0.05, 0.1, . . ., 1} are plotted: see Figs. 12 (86-mode system) and 13

(45-mode system). For the two original POD-Galerkin systems, it is observed that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðf a;2Þ

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3ðf a;2Þ

p
,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ðf a;3Þ
p

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðf a;3Þ

p
are increasing functions of a; furthermore,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðf a;kÞ

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðf a;kÞ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3ðf a;kÞ

p
take very small values for a = 0.001 for both calibration methods (k = 2 or k = 3).
Fig. 9. a function of d.



Fig. 10. Minimization results for the square–cylinder configuration.
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So the calibrations are effective but the optimal polynomials fa,2 and fa,3 cannot be regarded as small

perturbations of the original POD-Galerkin system f g for small values of a any more. For instance, for

M = 86 or M = 45,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðf a;kÞ

p
reaches about 0.2 when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðf a;kÞ

p
is around 0.25 for both methods (k = 2

or k = 3). For a = 0.001, the ODE system is more modified for M = 45 than for M = 86 (the values of D
are greater for M = 45), which was expected since more truncated terms have to be modeled.

Furthermore, notice there is a gap between the formal expressions of f g and the nature of the data used

since the data were computed using a finite-difference large-Eddy scheme and the boundary term ToX was

neglected in the variational formulation (see Section 2.1 and Appendix A): the calibration methods have to

model the truncated terms but also to fill this gap.

To display the effects of the calibrations of the 86-mode system, few components of the systems cali-

brated with a = 0.95 or a = 0.05 are plotted with the corresponding components of ag and a e.

Fig. 14 presents some components relative to three of the ten first POD modes. For both methods (k = 2

and k = 3), aa;ki converges as expected to aei as a tends to zero, for the three indexes i = 1, 5 and 10: the rel-
ative difference ðTriÞ�1 R T

0
ðaei ðtÞ � aa;ki ðtÞÞ2dt decreases, moreover aa;2i and aa;3i match aei for a = 0.05.

Some components with larger indices, corresponding to less energetic POD modes, are displayed in Fig.

15. It appears that the histories of a0:05;k40 , a0:05;k60 and a0:05;k80 are very satisfying for k = 2 and k = 3 as well, even



Fig. 11. Solution ag = a1,3 (a = 1) to the non-calibrated system (thin dashed line) and solution a0.05,3 to the system calibrated with

a = 0.05 by the flow method (thick line) for t 2 [0,3T].
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if a0:05;2i and a0:05;3i do not match perfectly aei for i = 60 and i = 80: the calibrations succeed in modelling the

main effects of the truncated POD modes.

4.2. Remark on condition numbers

Some computations were also performed with a = 0 for the preceding POD-Galerkin systems and for

both calibration methods. In those cases, the methods failed to compute a numerically stable ODE system

although it was possible for the Rössler and Lorenz systems: taking f g into account seems compulsory in
practice when the number of modes is not very small. This phenomenon can be understood looking at the

condition numbers of the matrices of the linear systems. The linear systems are indeed ill-conditioned for

a = 0 and D is necessary to form a non-singular problem whose an approximate solution can be computed.

The base-10 logarithm of the condition numbers KðBaÞ of the matrices B a formed during the calibra-

tions (see Appendix B) is plotted as a function of a in Fig. 16 for the 6-mode model of the square–cylinder
Fig. 12. Minimization results for the 86-mode POD-Galerkin system of the backward-facing-step configuration (M = 86).



Fig. 13. Minimization results for the 45-mode POD-Galerkin system of the backward-facing-step configuration (M = 45).
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configuration (left) and for the 86-mode model of the backward-facing step configuration (right). It gives

estimates of how many base-10 digits are lost when the corresponding linear systems are solved.

The numerical experiments presented were performed by manipulating 64-bit double precision numbers,
that is about 15 significative decimal digits, and by using a direct method to solve the linear system. Here,

log10ðKðB0ÞÞ is always greater than 15: the problem becomes ill-conditioned for a = 0.

4.3. Partial-Galerkin methods

In this section, the partial-Galerkin methods are experimented from the Galerkin polynomial coefficients

of the 86-mode system of the backward-facing step configuration. All the constant and linear monomials

evaluated by the Galerkin method are taken into account but only a subset of the numerous quadratic ones.
If the calibration methods remain effective for a small subset, considering that the other coefficients are zero

or defining i Æ iP so that only this subset matters, a computational gain is then obtained and that gain may be

greater than the increase of the cost of the POD computations which would be necessary for the calibra-

tions to be effective (see Section 3.4).

The quadratic terms which are neglected are chosen keeping in mind that the interactions between POD

modes are local, hence the ‘‘non-local’’ polynomial coefficients little matter a priori. That idea is based on

the observations made in [20,8]. More precisely, if Ci1;i2
j ai1ai2 denotes the quadratic monomials of the jth

component of a vector polynomial f as in Eq. (6), the monomial Ci1;i2
j ai1ai2 is neglected if, and only if,

ji1 � i2j is strictly greater than a threshold k. This criterion is the same for all the components of f (it does

not depend on j) thus the calibration method still amounts to solving a linear problem of dimension P/M

with M different right-hand sides, as in the previous experiments (as precised in the beginning of Section 4).

Notice that more sophisticated criterions with dependence on j could be proposed (for instance min(ji1 � jj,
ji2 � jj) > kj for M thresholds kj): these would be closer to the studies of the locality of the kinetic energy

transfers of [20,8], nevertheless only the first criterion was tested for practical considerations.

Firstly, semi-norms i Æ iP can be defined so that only the chosen subset of coefficients are taken into

account: this is the first strategy where some diagonal elements of P are set to zero as explained at the
end of Section 3.4. In that way, the methods do not implicitly assume that the neglected Galerkin coeffi-

cients are zero.

Unfortunately, this choice is not robust, since it generally leads to ill-conditioned linear systems. Indeed,

when i Æ iP is not definite, the linear system is singular for a = 1, whereas it seems that the contribution of D



Fig. 14. ith components of the solutions ag to the original POD-Galerkin system and aa,k to systems calibrated with a = 0.95 and

a = 0.05 by state (k = 2) or flow (k = 3) method and ith component of the data history ae, for i = 1, 5 and 10.
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improves the condition number in the previous experiments (Section 4.2). In consequence, k must be close

to M in our experiments for the calibrated system to be numerically stable and accurate.

Secondly, i Æ iP is defined as the definite Euclidian norm of the polynomial coefficients along the natural

monomial basis and the neglected Galerkin coefficients are assumed to be zero in the definition of f g. Some



Fig. 15. 40th, 60th and 80th components of the data history ae, of the solution ag to the original system and of the solutions a0.05,2 and

a0.05,3 to the state- and flow-calibrated systems for t 2 [0.65T,T].

Fig. 16. Condition numbers obtained during the calibrations of the 6-mode system of the square–cylinder flow (left) and of the 86-

mode system of the backward facing-step flow (right) for a = 0.001 and a in {0.05, 0.1, . . ., 1}.
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Fig. 17. Minimization results for the partial 86-mode system of the backward-facing-step flow corresponding to a threshold k = 40.

Fig. 18. Condition numbers obtained from the partial 86-mode system of the backward facing-step configuration corresponding to a

threshold k = 40.
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numerical experiments based on this second strategy were performed from the partial 86-mode Galerkin
system corresponding to k = 40 for a = 0.001 and a in {0.05, 0.1, . . ., 1}.

The results appear satisfying since relatively close to the preceding ones obtained from the full 86-mode

Galerkin system; see Fig. 17. Moreover the conditions numbers, plotted in Fig. 18, are not worse than

before.

All this leads to conclude that, in the case of transitional or turbulent flow modelling, the partial-Galer-

kin methods are interesting alternatives for correcting automatically the reduced-order POD-Galerkin

system behaviour at relatively low cost, assuming that non-local POD interactions are negligible and using

a definite norm i Æ iP.
5. Conclusions

Two numerical methods which rely on minimization problems and give rise to linear systems were pro-

posed to improve reduced-order POD-Galerkin systems by calibrating their polynomial coefficients. They
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can be applied to unstable POD-Galerkin systems, that is systems which take infinite values before the time

bound T considered. These methods exploit the temporal part of the POD information which is not taken

into account in the POD-Galerkin approach.

Some numerical tests were performed on a relevant problem using 1000 velocity snapshots of a three-

dimensional turbulent flow: the numerical behaviours of the 86-mode and 45-mode POD-Galerkin systems
of a backward-facing-step flow were noticeably improved by calibrating their polynomial coefficients.

The computational cost of the construction and resolution of the linear systems is reasonable for both

calibration methods since this cost is generally less than the cost of the POD-Galerkin calculations for tran-

sitional or turbulent flows. However, although reasonable, the global cost of the calibration is not insignif-

icant since more POD or interpolation computations could be necessary to increase the number of data for

the methods to be accurate enough. In particular, the first method (e = e2) needs close snapshots for the

discretization of the integrals over [0,t] to be accurate. Fortunately, large computational gain can be

obtained using partial-Galerkin methods in the cases of transitional or turbulent flows.
This work suggests several points to investigate. First, physical interpretation of the calibrations

obtained should be studied. Furthermore, the impact of this POD-Galerkin modelling with calibration

for the active control of an unsteady flow remains unknown. Moreover, the methods could be immediately

applied on compressible flow cases since polynomial POD-Galerkin systems can be derived from the

Navier–Stokes equations for a perfect gas (see [11] or [5]). And eventually, the effectiveness of the calibra-

tion methods could be tested for other modelling problems, not necessary in the fluid mechanics field.

Indeed, the methods can be easily extended to non-polynomial problems by assuming a new suitable space

instead of the quadratic polynomial one which is considered here.
Appendix A. Treatment of the boundary conditions in the Galerkin method

The boundary term of the variational formulation (4) is
T oX ¼
Z
oX

toXds with toX ¼ pn� 1

Re
ru½ �n

	 

� u; ðA:1Þ
with p the pressure field and n the outward unitary normal at the border oX of X. That natural flux toX of

the incompressible Navier–Stokes equations can be fully defined on oX by u for a large class of boundary

conditions prescribed for incompressible flows. Thus, the pressure vanishes from the variational formula-
tion and an ODE system only based on the POD of the velocity can be constructed by applying the Galer-

kin method.

Indeed, let us regard the following conditions on the boundary oX = CD [ CN with CN = oXnCD:
u ¼ w on CD; ðA:2Þ

�~rn ¼ b on CN ; ðA:3Þ

where
~r ¼ 1

Re
½ru� � pId ðA:4Þ
is a pseudo stress tensor (Id is the identity matrix of dimension d) and b the pseudo flow stress set on CN.
(A.3) is a generalization of some boundary conditions usually used in incompressible flow simulations to

represent the flow in an unbounded region: for instance
½ru�n ¼ 0 and p ¼ q; ðA:5Þ
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which can be applied for external flow (q is the pressure which is prescribed on CN) or
pn� 1

Re
½ru�n ¼ 0 ðA:6Þ
(pseudo stress free condition) which is often used as outlet condition for canal flows: read [21] or [2].

If the Dirichlet condition on the velocity is nonhomogeneous, that is w 6¼ 0 on CD, the POD is performed

on ue � �ue with a solenoidal field �ue satisfying �ue ¼ w on CD: the POD modes are then solenoidal and van-

ish on CD as ue � �ue and the test function u has to be considered in a space of solenoidal functions which

vanish on CD. Therefore, toX takes zero values on CD.

Moreover, the boundary condition (A.3) implies that toX = b Æ u on CN. Thus, the variational formula-

tion (4) becomes
d

dt
ðu;uÞ þ ððu � rÞu;uÞ þ 1

Re

Xd
i¼1

ruxi ;ruxi

� �
þ
Z
CN

b � u ds ¼ ðh;uÞ: ðA:7Þ
Finally, the POD-Galerkin system is obtained from (A.7) using the Galerkin method with the POD modes
as test functions and basis functions for u� �ue.

Notice that T oX ¼
R
CN
b � u ds ¼ 0 if b = �Pn with P a constant pressure for any solenoidal test function

u which is zero on CD, which is logical since only the gradient of the pressure and not the pressure is phys-

ical in the case of an incompressible flow ($(p + P) = $p).
For the backward-facing step flow configuration, the outlet condition (A.6) is used. However, for

the square–cylinder flow configuration, the outlet condition is little different: the transverse velocity

ux2 , the normal derivative of the streamwise velocity ox1ux1 and the dynamic pressure were set to zero during

the computations at the outlet, that is
pn� 1

Re
½ru�n ¼ �P sn�

1

Re
ox1ux2x2 ðA:8Þ
at the outlet, where Ps is a constant static pressure, x2 is the unitary vector in the transverse direction, the

subscripts x1 and x2 denote respectively the streamwise and transverse components (nx1 ¼ 1 and

nx2 ¼ n � x2 ¼ 0 at the outlet) and where ox1ux2 is the derivative of ux2 ¼ u � x2 in the normal direction. That
condition is not strictly equivalent to (A.3) for b = �Psn but leads to the same conclusion: the boundary

term ToX vanishes if the test function u is solenoidal and satisfies the same Dirichlet conditions than the

velocity field, in particular ux2 ¼ u � x2 ¼ 0 at the outlet. This is especially true if u is a POD mode of a

‘‘fluctuant’’ velocity ue � �ue where �ue is a solenoidal field defined to satisfy the same Dirichlet boundary con-

ditions than ue.
That explicit treatment of the boundary conditions is interesting if constructing such a solenoidal

field �ue which satisfies the Dirichlet boundary conditions is easy and cheap. This is especially true

for unsteady Dirichlet conditions (a mean velocity field is suitable) or for Dirichlet conditions in the
form
�ueðx; tÞ ¼ wðx; tÞ ¼
XK
i¼1

wiðtÞwiðxÞ on CD; ðA:9Þ
with K small: it suffices to solve K Stokes problems for each velocity profile wi. However, for complex

unsteady Dirichlet boundary condition as in our step flow configuration, computing �ue amounts to sim-

ulating the flow: the boundary term toX poses problems and must be neglected or modeled (or the veloc-
ity–vorticity formulation of Rempfer must be tested [22]). Fortunately, the inlet Dirichlet condition of

our step flow is quasi-steady and toX can be neglected as first approximation since it takes small values

at the inlet.
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A.1. Important remark

Notice that the variational formulation (A.7) is available for a pseudo stress condition (A.3) but not for

the stress condition �rn = b where
r ¼ ~rþ 1

Re
½ru�T ¼ 1

Re
½ru� þ ½ru�T
� �

� pId ðA:10Þ
is the physical stress tensor and now b the flow stress on CN. That latter condition is used in particular in the

work of Noack et al. [14] but is not considered in the variational formulation proposed.

However, that boundary condition could be explicitly taken into account in theory by keeping the zero

divergence of $uT in the incompressible expression of the Navier–Stokes equations. Indeed, the incompress-
ible Navier–Stokes equations can be expressed for any x 2 R as
r � u ¼ 0; ðA:11Þ

otuþ ðu � rÞu�r: ð1� xÞ~rþ xr½ � ¼ h;
since $ Æ ([$u]T) = $($ Æ u) = 0 (the case x = 0 corresponds to the classical expression of the incompressible
Navier–Stokes equations). From the corresponding Navier–Stokes problem for x = 1 with Dirichlet con-

ditions on CD for the velocity and the condition (A.10) on CN = oXnCD, the following variational formu-

lation is deduced for a solenoidal test function u which satisfies homogeneous Dirichlet conditions on CD:
d

dt
ðu;uÞ þ ððu � rÞu;uÞ þ 1

Re

Xd
i¼1

ruxi ;ruxi

� �
þ
Xd
i;j¼1

oxiuxj ; oxjuxi

� � !
þ
Z
CN

b � u ds ¼ ðh;uÞ: ðA:12Þ
In conclusion, it seems that the flux boundary condition (A.10) could be explicitly taken into account within
a POD-Galerkin system as the pseudo stress condition. Such a system has not been constructed yet in the

literature.
Appendix B. Case e affine

We suppose that e is an affine function of f, that is of its coefficients y 2 RP in the natural monomial basis

(mk)1 6 k 6 P of the vector polynomials in M variables of degree 2 with M components (that natural basis is
given for M = 2 in Appendix D). In the following, yg and y a will denote the coefficients of f g (the original

POD-Galerkin system) and f a (the calibrated system), respectively; moreover e(y,t) ” e(f,t), EðyÞ � Eðf Þ
and so on by notation abuse.

Hence, since e is affine,
eð�; tÞ : RP ! RM ; y 7! EðtÞy þ eð0; tÞ; ðB:1Þ

where the columns of EðtÞ 2 RM�P are the vectors e(mk,t)�e(0,t). Thus,
keðf ; tÞk2K
D E

¼ heðy; tÞTKeðy; tÞi ¼ c� 2lTy þ yTAy; ðB:2Þ
with
c ¼ heð0; tÞTKeð0; tÞi; ðB:3Þ

l ¼ �hEðtÞTKeð0; tÞi ðB:4Þ
and
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A ¼ hEðtÞTKEðtÞi: ðB:5Þ

Since A is symmetric, the gradient of ð1� aÞE at y is 2vA(Ay � l) with
vA ¼ ð1� aÞ
keðf g; tÞk2K
D E : ðB:6Þ
Therefore, if P is the non-negative symmetric matrix associated to D, the differential of Ja is
rJaðyÞ : RP ! R; ðB:7Þ

dy 7! 2 vAAþ vPPð Þy � vAlþ vPPygð Þ½ �Tdy;
where
vP ¼ a

kf gk2P
ðB:8Þ
and
JaðyaÞ ¼ min
y2RP

JaðyÞ () Baya ¼ la; ðB:9Þ
with
Ba ¼ vAAþ vPP and la ¼ vAlþ vPPyg: ðB:10Þ

If B a is non-singular, the solution to the problem is unique and can be computed if this matrix is well

conditioned.
Appendix C. Expressions of A and l for state and flow calibrations

With the notations of the preceding appendix, the expressions of A and l are with K = IM

� for the state calibration (e = e2):
Ai;j ¼
Z t

0

miðaeðsÞÞds
� �T Z t

0

mjðaeðsÞÞds
* +

ðC:1Þ
and
li ¼
Z t

0

miðaeðsÞÞds
� �T

aeðtÞ � aeð0Þð Þ
* +

ðC:2Þ
� and for the flow calibration (e = e3):
Ai;j ¼ miðaeðtÞÞTmjðaeðtÞÞ
D E

m ðC:3Þ
and
li ¼ miðaeðtÞÞT _aeðtÞ
D E

: ðC:4Þ
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It is worth noting that, for K = IM, A can be written in block diagonal form with identical blocks for

both calibration methods (it depends on the order of the vector monomial basis). Therefore, if P is block

diagonal with identical blocks as well, the linear system B ay a = l a can be split intoM similar linear systems

of dimension P/M; in fact, any jth component f a
j of f a is solution to an minimization problem defined by a,

the diagonal blocks eP of P, the vector Y g
:;j of coefficients of the jth component of f g, a e and _aej : see below

for more details in the case M = 2.
Appendix D. Linear systems obtained for M = 2

If M = 2, P = 12 and the natural vector monomial basis (mk)16 k6P is defined, for a = (a1 a2)
T and for

all 1 6 i 6 P/M, by
miðaÞ ¼
emiðaÞ
0

	 

; miþðP=MÞðaÞ ¼ miþ6ðaÞ ¼

0emiðaÞ

	 

; ðD:1Þ
where ðemkÞ16k6P=M is the scalar monomial basis: em1ðaÞ ¼ 1, em2ðaÞ ¼ a1, em3ðaÞ ¼ a2, em4ðaÞ ¼ a21,em5ðaÞ ¼ a1a2 and em6ðaÞ ¼ a22. Therefore, if K = IM,
A ¼
eA 0

0 eA
 !

with eA 2 RðP=MÞ�ðP=MÞ ðD:2Þ
and
eAi;j ¼
R t
0
emiðaeðsÞÞds

R t
0
emjðaeðsÞÞds


 �
for e ¼ e2;emiðaeðtÞÞemjðaeðtÞÞ


 �
for e ¼ e3:

(
ðD:3Þ
For instance,
eA2;5 ¼ eA5;2 ¼
Z t

0

ae1ðsÞds
Z t

0

ae1ðsÞae2ðsÞds
� �

for e ¼ e2 ðD:4Þ
and
eA2;3 ¼ eA3;2 ¼ eA1;5 ¼ eA5;1 ¼ ae1ðtÞae2ðtÞ

 �

for e ¼ e3 ðD:5Þ
(eA2;3 6¼ eA1;5 for e = e2). Thus, if P is block diagonal with identical blocks as A is, the system B ay a = l a of
dimension P = 12 naturally divides into M = 2 similar systems of dimension P/M = 6 which can be written

as a single linear system:
eBa
Y a ¼ La; ðD:6Þ
where

� eBa ¼ vAeA þ vP eP 2 RðP=MÞ�ðP=MÞ with P ¼
eP 0

0 eP
	 


(vA and vA are defined in Appendix B),

� Y a ¼ Y a
:;1Y

a
:;2

� �
2 RðP=MÞ�M where the jth column Y a

:;j of Y
a contains the coefficients of the scalar polyno-

mial f a
j in the monomial basis ðemkÞ (f a

j is the jth component of f a),

� La ¼ vALþ vP ePY g where Y g 2 RðP=MÞ�M contains the polynomial coefficients of the original POD-Galer-

kin system f g as Y a does for f a and where L 2 RðP=MÞ�M is defined by
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Li;j ¼¼

R t
0
emiðaeðsÞÞds ðaejðtÞ � aejð0ÞÞ

D E
for e ¼ e2

emiðaeðtÞÞ _aejðtÞ
D E

for e ¼ e3:

8><>: ðD:7Þ
For instance,
L6;1 ¼
Z t

0

ae2ðsÞ
2
dsðae1ðtÞ � ae1ð0ÞÞ

� �
for e ¼ e2 ðD:8Þ
and
L4;2 ¼ ae1ðtÞ
2 _ae2ðtÞ

D E
for e ¼ e3: ðD:9Þ
In fact, any solution Y a
:;j to

eBa
Y a

:;j ¼ La
:;j corresponds to an optimal scalar polynomial f a

j :
Ja
j ðf a

j Þ 6 Ja
j ðf Þ ðD:10Þ
for all scalar polynomial f of degree 2 in M variables with
Ja
j ðf Þ ¼ vAKj;jE

jðf Þ þ vPD
jðf Þ; ðD:11Þ
where
Ejðf Þ ¼
aejðtÞ � aejð0Þ �

R t
0
f ðaeðsÞÞds

h i2� �
for e ¼ e2;

_aejðtÞ � f ðaeðtÞÞ
h i2� �

for e ¼ e3;

8>>><>>>: ðD:12Þ

Djðf Þ ¼ kf � f g
j k

2eP ¼ ðy � Y g
:;jÞ

T ePðy � Y g
:;jÞ ðD:13Þ
if y 2 RP=M is the vector of the polynomial coefficients of f in the scalar monomial basis ðemkÞ16k6P=M .
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